
Springer Proceedings in Mathematics & Statistics

Volume 36

For further volumes:
http://www.springer.com/series/10533

http://www.springer.com/series/10533


Springer Proceedings in Mathematics & Statistics

This book series features volumes composed of select contributions from workshops
and conferences in all areas of current research in mathematics and statistics,
including OR and optimization. In addition to an overall evaluation of the interest,
scientific quality, and timeliness of each proposal at the hands of the publisher,
individual contributions are all refereed to the high quality standards of leading
journals in the field. Thus, this series provides the research community with
well-edited, authoritative reports on developments in the most exciting areas of
mathematical and statistical research today.



Vladimir Dobrev
Editor

Lie Theory and Its
Applications in Physics

IX International Workshop

123



Editor
Vladimir Dobrev
Institute for Nuclear Research

and Nuclear Energy
Bulgarian Academy of Sciences
72 Tsarigradsko Chaussee
Sofia, Bulgaria

ISSN 2194-1009 ISSN 2194-1017 (electronic)
ISBN 978-4-431-54269-8 ISBN 978-4-431-54270-4 (eBook)
DOI 10.1007/978-4-431-54270-4
Springer Tokyo Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013934220

© Springer Japan 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

The workshop series “Lie Theory and Its Applications in Physics” is designed
to serve the community of theoretical physicists, mathematical physicists, and
mathematicians working on mathematical models for physical systems based on
geometrical methods and in the field of Lie theory.

The series reflects the trend towards a geometrization of the mathematical
description of physical systems and objects. A geometric approach to a system
yields in general some notion of symmetry which is very helpful in understanding
its structure. Geometrization and symmetries are meant in their widest sense, i.e.,
classical geometry, differential geometry, groups and quantum groups, infinite-
dimensional (super-)algebras, and their representations. Furthermore, we include
the necessary tools from functional analysis and number theory. This is a big
interdisciplinary and interrelated field.

The first three workshops were organized in Clausthal (1995, 1997, 1999), the
4th was part of the 2nd Symposium “Quantum Theory and Symmetries” in Cracow
(2001), the 5th, 7th, and 8th were organized in Varna (2003, 2007, 2009), and the
6th was part of the 4th Symposium “Quantum Theory and Symmetries” in Varna
(2005) but has its own volume of proceedings.

The 9th workshop of the series (LT-9) was organized by the Institute of Nuclear
Research and Nuclear Energy of the Bulgarian Academy of Sciences (BAS) in June
2011 (20–26), at the guest house of BAS near Varna on the Bulgarian Black Sea
Coast.

The overall number of participants was 76 and they came from 21 countries.
The scientific level was very high as can be judged by the speakers. The

plenary speakers were Anton Alekseev (Geneva), Loriano Bonora (Trieste), Branko
Dragovich (Belgrade), Anthony Joseph (Rehovot), Toshiyuki Kobayashi (Tokyo),
Jean-Louis Loday (Strasbourg), Ivan Penkov (Bremen), Karl-Henning Rehren
(Gttingen), and Ivan Todorov (Sofia). A special plenary session, with the speakers
Joris Van der Jeugt (Ghent), Ronald King (Southampton), and David Finkelstein
(Atlanta), was devoted to the 75th-year Jubilee of Tchavdar Palev, Professor
Emeritus at our Institute.
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vi Preface

The topics covered the most modern trends in the field of the workshop:
representation theory, quantum field theory, string theory, (super-)gravity theories,
conformal field theory, supersymmetry, quantum groups, vertex algebras, and
integrability.

The members of the International Organizing Committee were V.K. Dobrev
(Sofia) and H.-D. Doebner (Clausthal), in collaboration with G. Rudolph (Leipzig).

The members of the Local Organizing Committee were V.K. Dobrev (Chairman),
V.I. Doseva, A. Ganchev, S.G. Mihov, D. Nedanovski, T.V. Popov, T. Stefanova,
M.N. Stoilov, and S.T. Stoimenov.
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Hilbert Space Decomposition for Coulomb Blockade
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Université de Strasbourg, Strasbourg, France

Stefan Mihov Bulgarian Academy of Sciences, Institute for Nuclear Research and
Nuclear Energy, BG Sofia, Bulgaria

Patrick Moylan The Abington College, Pennsylvania State University, Abington,
PA, USA

Dimitar Nedanovski Bulgarian Academy of Sciences, Institute for Nuclear
Research and Nuclear Energy, BG Sofia, Bulgaria

Christoph Neumann Goettingen University, Institute for Theoretical Physics,
Goettingen, Germany

Nikolay Nikolov Bulgarian Academy of Sciences, Institute for Nuclear Research
and Nuclear Energy, BG Sofia, Bulgaria

Emil Nissimov Bulgarian Academy of Sciences, Institute for Nuclear Research
and Nuclear Energy, BG Sofia, Bulgaria

Petr Novotny Czech Technical University in Prague, FNSPE, Prague, Czech
Republic

Svetlana Pacheva Bulgarian Academy of Sciences, Institute for Nuclear Research
and Nuclear Energy, BG Sofia, Bulgaria

Tchavdar Palev Bulgarian Academy of Sciences, Institute for Nuclear Research
and Nuclear Energy, BG Sofia, Bulgaria

Ivan Penkov Mathematics Department, Jacobs University Bremen, Bremen,
Germany

Valentina Petkova Bulgarian Academy of Sciences, Institute for Nuclear Research
and Nuclear Energy, BG Sofia, Bulgaria

Elena Poletaeva Department of Mathematics, University of Texas-Pan American,
Edinburg, TX, USA

Todor Popov Bulgarian Academy of Sciences, Institute for Nuclear Research and
Nuclear Energy, BG Sofia, Bulgaria

Severin Posta Czech Technical University in Prague, Prague, Czech Republic

Bela Gabor Pusztai Bolyai Institute, University of Szeged, Szeged, Hungary



xiv List of Participants

Zoran Rakic Faculty of Mathematics, University of Belgrade, Beograd, Serbia

Karlhenning Rehren Institute for Theoretical Physics, Goettingen University,
Goettingen, Germany

Adam Rej Imperial College London, London, UK

Maria Eugenia Rosado Universidad Politecnica de Madrid, ETSAM, Madrid,
Spain

Igor Salom Institute of Physics, Pregrevica, Belgrade, Serbia

Michail Stoilov Bulgarian Academy of Sciences, Institute for Nuclear Research
and Nuclear Energy, BG Sofia, Bulgaria

Stoimen Stoimenov Bulgarian Academy of Sciences, Institute for Nuclear Re-
search and Nuclear Energy, BG Sofia, Bulgaria

Fumihiko Sugino Okayama Institute for Quantum Physics, Kita-ku, Okayama,
Japan

Ivan Todorov Bulgarian Academy of Sciences, Institute for Nuclear Research and
Nuclear Energy, BG Sofia, Bulgaria

Joris Van Der Jeugt Department of Applied Mathematics, Ghent University, Gent,
Belgium

Olena Vaneeva Department of Applied Research, Institute of Mathematics,
National Academy of Sciences of Ukraine, Kyiv, Ukraine

Joost Vercruysse Vrije Universiteit Brussel, Pleinlaan, Brussel, Belgium

Jirina Vodova Mathematical Institute, Silesian University in Opava, Na Rybnicku,
Opava, Czech Republic

Petr Vojcak Mathematical Institute, Silesian University in Opava, Na Rybnicku,
Opava, Czech Republic

Lena Wallenhorst Goettingen University, Institute for Theoretical Physics,
Goettingen, Germany

Zhituo Wang Universite Paris XI, Laboratoire de Physique Theorique d‘Orsay,
CNRS UMR, Orsay Cedex, France

Justin Wilson Department of Physics, University of Maryland at College Park,
College Park, MD, USA

Asher Yahalom Ariel University Center of Samaria, Kiryat Hamada, Ariel, Israel

Milen Yakimov Department of Mathematics, Louisiana State University, Baton
Rouge, LA, USA

Hiromichi Yamada Hitotsubashi University, Kunitachi, Tokyo, Japan



Lightlike Braneworlds in Anti-de Sitter Bulk
Space-times

Eduardo Guendelman, Alexander Kaganovich, Emil Nissimov,Svetlana Pacheva

Abstract We consider five-dimensional Einstein-Maxwell-Kalb-Ramond system
self-consistently coupled to alightlike 3-brane, where the latter acts as material,
charge and variable cosmological constant source. We find wormhole-like solu-
tions whose total space-time manifold consists of either (a) two “universes”, which
are identical copies of the exterior space-time region (beyond the horizon) of 5-
dimensional Schwarzschild-anti-de Sitter black hole, or (b) a “right” “universe”
comprising the exterior space-time region of Reissner-Nordström-anti-de Sitter
black hole and a “left” “universe” being the Rindler “wedge”of 5-dimensional flat
Minkowski space. The wormhole “throat” connecting these “universes”, which is
located on their common horizons, is self-consistently occupied by the lightlike
3-brane as a direct result of its dynamics given by an explicit reparametrization-
invariant world-volume Lagrangian action. The intrinsic world-volume metric on
the 3-brane turns out to be flat, which allows its interpretation as a lightlike
braneworld.

1 Introduction

Lightlike branes (“LL-branes” for short) play an important role in modern gen-
eral relativity.LL-branesare singular null (lightlike) hypersurfaces in Riemannian
space-time which provide dynamical description of variousphysically important
phenomena in cosmology and astrophysics such as: (i) impulsive lightlike signals
arising in cataclysmic astrophysical events (supernovae,neutron star collisions)

Eduardo Guendelman and Alexander Kaganovich
Department of Physics, Ben-Gurion University of the Negev,Beer-Sheva, Israel,
e-mail: guendel@bgu.ac.il, e-mail: alexk@bgu.ac.il
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1



2 Eduardo Guendelman, Alexander Kaganovich, Emil Nissimov, Svetlana Pacheva

[1]; (ii) dynamics of horizons in black hole physics – the so called “membrane
paradigm” [2]; (iii) the thin-wall approach to domain wallscoupled to gravity [3]–
[6]. More recently,LL-branesbecame significant also in the context of modern non-
perturbative string theory [7, 8, 9, 10]

In our previous papers [11]–[20] we have provided an explicit reparametriza-
tion invariant world-volume Lagrangian formulation of lightlike p-branes (a brief
review is given in Section 2) and we have used them to construct various types of
wormhole, regular black hole and lightlike braneworld solutions inD=4 or higher-
dimensional asymptotically flat or asymptotically anti-deSitter bulk space-times
(for a detailed account of the general theory of wormholes see the book [21] and
also refs.[22]–[28]). In particular, in refs.[18, 19, 20] we have shown that lightlike
branes can trigger a series of spontaneous compactification-decompactification tran-
sitions of space-time regions,e.g., from ordinary compactified (“tube-like”) Levi-
Civita-Bertotti-Robinson [29, 30, 31] space to non-compact Reissner-Nordström or
Reissner-Nordström-de-Sitter region orvice versa. Let us note that wormholes with
“tube-like” structure (and regular black holes with “tube-like” core) have been pre-
viously obtained within different contexts in refs.[32]–[40].

Let us emphasize the following characteristic features ofLL-braneswhich dras-
tically distinguish them from ordinary Nambu-Goto branes:

(i) They describe intrinsically lightlike modes, whereas Nambu-Goto branes de-
scribe massive ones.

(ii) The tension of theLL-brane arises as anadditional dynamical degree of
freedom, whereas Nambu-Goto brane tension is a givenad hocconstant. The lat-
ter characteristic feature significantly distinguishes our LL-branemodels from the
previously proposedtensionless p-branes (for a review of the latter, see Ref. [41])
which rather resemble ap-dimensional continuous distribution of massless point-
particles.

(iii) Consistency ofLL-brane dynamics in a spherically or axially symmetric
gravitational background of codimension one requires the presence of a horizon
which is automatically occupied by theLL-brane (“horizon straddling” according
to the terminology of ref. [4]).

(iv) When theLL-brane moves as atest brane in spherically or axially sym-
metric gravitational backgrounds its dynamical tension exhibits exponential “infla-
tion/deflation” time behavior [42] – an effect similar to the“mass inflation” effect
around black hole horizons [43, 44].

Here we will focus on studying 4-dimensional lightlike braneworlds in 5-dimensional
bulk anti-de Sitter spaces – an alternative to the standard Randall-Sundrum sce-
nario [45, 46] (for a systematic overview to braneworld theory, see [47, 48, 49]).
Namely, we will present explicit solutions of 5-dimensionals Einstein-Maxwell-
Kalb-Ramond system self-consistently interacting with codimension-oneLL-branes,
which are special kinds of“wormhole”-like space-times of either one of the follow-
ing structures:

(A) two “universes” which are identical copies of the exterior space-time region
(beyond the horizon) of 5-dimensional Schwarzschild-anti-de Sitter black hole;
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(B) “right” “universe” comprising the exterior space-timeregion of Reissner-
Nordström-anti-de Sitter black hole and “left” “universe” being the Rindler “wedge”
of 5-dimensional flat Minkowski space.

Both “right” and “left” “universes” in (A)-(B) are glued together along their com-
mon horizons occupied by theLL-brane with flat 4-dimensional intrinsic world-
volume metric, in other words, a flat lightlike braneworld (LL-braneworld) at the
wormhole “throat”. In case (A) theLL-brane is electrically neutral whereas in case
(B) it is both electrically charged as well as it couples alsoto a bulk Kalb-Ramond
tensor gauge field.

2 Lagrangian Formulation of Lightlike Brane Dynamics

In what follows we will consider gravity/gauge-field systemself-consistently inter-
acting with a lightlikep-brane of codimension one (D = (p+1)+1). In a series of
previous papers [11]–[20] we have proposed manifestly reparametrization invariant
world-volume Lagrangian formulation in several dynamically equivalent forms of
LL-branescoupled to bulk gravityGµν and bulk gauge fields, in particular, Maxwell
Aµ and Kalb-RamondAµ1...µD−1. Here we will use our Polyakov-type formulation
given by the world-volume action:

SLL [q,β ] = −1
2

∫

dp+1σ Tb
p−1

2
0

√−γ
[

γabḡab−b0(p−1)
]

, (1)

− β
(p+1)!

∫

dp+1σ εa1...ap+1∂a1Xµ1 . . .∂ap+1X
µp+1Aµ1...µp+1 (2)

where:

ḡab ≡ ∂aXµGµν ∂bXν − 1
T2 (∂au+qAa)(∂bu+qAb) , Aa ≡ ∂aXµAµ . (3)

Here and below the following notations are used:

• Xµ(σ) are thep-brane embedding coordinates in the bulkD-dimensional space-
time with Riemannian metricGµν(x) (µ ,ν = 0,1, . . . ,D−1); (σ)≡

(

σ0 ≡ τ,σ i
)

with i = 1, . . . , p; ∂a ≡ ∂
∂σa .

• γab is the intrinsic Riemannian metric on the world-volume withγ = det‖γab‖;
gab is theinducedmetric on the world-volume:

gab ≡ ∂aXµGµν(X)∂bXν , (4)

which becomessingular on-shell (manifestation of the lightlike nature),cf.
Eq.(9) below);b0 is a positive constant measuring the world-volume “cosmo-
logical constant”.
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• u is auxiliary world-volume scalar field defining the lightlike direction of the
induced metric (see Eq.(9) below) and it is a non-propagating degree of freedom
(cf. ref.[20]).

• T is dynamical (variable)brane tension (also a non-propagating degree of free-
dom).

• The coupling parametersq andβ are the electric surface charge density and the
Kalb-Rammond charge of theLL-brane, respectively.

The corresponding equations of motion w.r.t.Xµ , u, γab andT read accordingly
(using short-hand notation (3)):

∂a

(

T
√

|ḡ|ḡab∂bXµ
)

+T
√

|ḡ|ḡab∂aXλ ∂bXνΓ µ
λ ν

+
q
T

√

|ḡ|ḡab∂aXν(∂bu+qAb)Fλ νGµλ

− β
(p+1)!

εa1...ap+1∂a1Xµ1 . . .∂ap+1Xµp+1Fλ µ1...µp+1
Gλ µ = 0 , (5)

∂a

(

1
T

√

|ḡ|ḡab(∂bu+qAb)

)

= 0 , γab =
1
b0

ḡab , (6)

T2 + ḡab(∂au+qAa)(∂bu+qAb) = 0 . (7)

Hereḡ = det‖ḡab‖, Γ µ
λ ν denotes the Christoffel connection for the bulk metricGµν

and:

Fµν = ∂µAν − ∂νAµ , Fµ1...µD = D∂[µ1
Aµ2...µD] = F

√
−Gεµ1...µD (8)

are the corresponding gauge field strengths.
The on-shell singularity of the induced metricgab (4), i.e., the lightlike property,

directly follows Eq.(7) and the definition of ¯gab (3):

gab

(

ḡbc(∂cu+qAc)
)

= 0 . (9)

Explicit world-volume reparametrization invariance of the LL-brane action (1)
allows to introduce the standard synchronous gauge-fixing conditions for the intrin-
sic world-volume metric

γ00 = −1 , γ0i = 0 (i = 1, . . . , p) . (10)

which reduces Eqs.(6)–(7) to the following relations:

(∂0u+qA0)
2

T2 = b0 +g00 , ∂iu+qAi = (∂0u+qA0)g0i (b0 +g00)
−1 ,

g00 = gi j g0ig0 j , ∂0

(

√

g(p)

)

− ∂i

(

√

g(p)gi j g0 j

)

= 0 , g(p) ≡ det‖gi j‖ , (11)
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(recall thatg00,g0i ,gi j are the components of the induced metric (4);gi j is the in-
verse matrix ofgi j ). Then, as shown in refs.[11]–[20], consistency ofLL-branedy-
namics in static “spherically-symmetric”-type backgrounds (in what follows we will
use Eddington-Finkelstein coordinates,dt = dv− dη

A(η) ):

ds2 = −A(η)dv2 +2dvdη +C(η)hi j (θ )dθ idθ j ,

Fvη = Fvη(η) , rest= 0 , F = F (η) , (12)

with the standard embedding ansatz:

X0 ≡ v = τ , X1 ≡ η = η(τ) , Xi ≡ θ i = σ i (i = 1, . . . , p) . (13)

requires the corresponding background (12) to possess a horizon at someη = η0,
which is automatically occupied by theLL-brane.

Indeed, in the case of (12)–(13) Eqs.(11) reduce to:

g00 = 0 , ∂0C
(

η(τ)
)

≡
.

η ∂ηC
∣

∣

η=η(τ)
= 0 ,

(∂0u+qA0)
2

T2 = b0 , ∂iu = 0 (14)

(
.

η≡ ∂0η ≡ ∂τ η(τ)). Thus, in the generic case of non-trivial dependence ofC(η) on
the “radial-like” coordinateη , the first two relations in (14) yield:

.
η=

1
2

A
(

η(τ)
)

,
.

η= 0 → η(τ) = η0 = const , A(η0) = 0 . (15)

The latter property is called “horizon straddling” according to the terminology of
ref.[4]. Similar “horizon straddling” has been found also for LL-branesmoving in
rotating axially symmetric (Kerr or Kerr-Newman) and rotating cylindrically sym-
metric black hole backgrounds [16, 17].

3 Gravity/Gauge-Field System Interacting with Lightlike Brane

The generally covariant and manifestly world-volume reparametrization-invariant
Lagrangian action describing a bulk Einstein-Maxwell-Kalb-Ramond system (with
bulk cosmological constantΛ ) self-consistently interacting with a codimension-one
LL-brane is given by:

S=

∫

dDx
√
−G

[

R(G)−2Λ
16π

− 1
4

FµνFµν − 1
D!2

Fµ1...µDFµ1...µD

]

+SLL [q,β ] ,

(16)
where againFµν andFµ1...µD are the Maxwell and Kalb-Ramond field-strengths (8)
andSLL [q,β ] indicates the world-volume action of theLL-brane of the form (1).
It is now theLL-brane which will be the material and charge source for gravity
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and electromagnetism, as well as it will generate dynamically an additional space-
varying bulk cosmological constant (see Eq.(20) and secondrelation (28) below).

The equations of motion resulting from (16) read:
(a) Einstein equations:

Rµν −
1
2

Gµν R+ΛGµν = 8π
(

T(EM)
µν +T(KR)

µν +T(brane)
µν

)

; (17)

(b) Maxwell equations:

∂ν

[√
−GFκλ GµκGνλ

]

+ jµ
(brane) = 0 ; (18)

(c) Kalb-Ramond equations (recall definition ofF in (8)):

ενµ1...µp+1∂νF −J
µ1...µp+1
(brane) = 0 ; (19)

(d) TheLL-braneequations of motion have already been written down in (5)–(7)
above.

The energy-momentum tensors of bulk gauge fields are given by:

T(EM)
µν = FµκFµν −Gµν

1
4

Fκλ Fκλ , T(KR)
µν = −1

2
F 2Gµν , (20)

where the last relation indicates thatΛ ≡ 4πF 2 can be interpreted as dynamically
generated cosmological “constant”.

The energy-momentum (stress-energy) tensorT(brane)
µν and the electromagnetic

jµ
(brane) and Kalb-RamondJ

µ1...µp+1

(brane) charge current densities of theLL-brane are-
straightforwardly derived from the pertinentLL-braneaction (1):

Tµν
(brane) = −

∫

dp+1σ
δ (D)

(

x−X(σ)
)

√
−G

T
√

|ḡ|ḡab∂aXµ∂bXν , (21)

jµ
(brane) = −q

∫

dp+1σ δ (D)
(

x−X(σ)
)

√

|ḡ|ḡab∂aXµ (∂bu+qAb)T−1 , (22)

J
µ1...µp+1

(brane) = β
∫

dp+1σ δ (D)
(

x−X(σ)
)

εa1...ap+1∂a1Xµ1 . . .∂ap+1Xµp+1 . (23)

Construction of “wormhole”-like solutions of static “spherically-symmetric”-
type (12) for the coupled gravity-gauge-field-LL-branesystem (16) proceeds along
the following simple steps:

(i) Choose “vacuum” static “spherically-symmetric”-typesolutions (12) of (17)–
(19) (i.e., without the delta-function terms due to theLL-branes) in each region
−∞ < η < η0 andη0 < η < ∞ with a common horizon atη = η0;

(ii) The LL-braneautomatically locates itself on the horizon according to “hori-
zon straddling” property (15);

(iii) Match the discontinuities of the derivatives of the metric and the gauge field
strength (12) across the horizon atη = η0 using the explicit expressions for the
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LL-brane stress-energy tensor, electromagnetic and Kalb-Ramond charge current
densities (21)–(23).

Using (11)–(13) we find:

Tµν
(brane) = Sµν δ (η −η0) , jµ

(brane) = δ µ
0 q

√

det‖Gi j ‖δ (η −η0) , (24)

1
(p+1)!

εµν1...νp+1J
ν1...νp+1

(brane) = β δ η
µ δ (η −η0)

whereGi j = C(η)hi j (θ ) (cf. (12)) and the surface energy-momentum tensor reads:

Sµν ≡ T

b1/2
0

(

∂τXµ∂τ Xν −b0G
i j ∂iX

µ∂ jX
ν)

v=τ,η=η0,θ i=σ i . (25)

The non-zero components ofSµν (with lower indices) and its trace are:

Sηη =
T

b1/2
0

, Si j = −Tb1/2
0 Gi j , Sλ

λ = −pTb1/2
0 . (26)

Taking into account (24)–(26) together with (12)–(15), thematching relations at the
horizonη = η0 become [18, 19, 20] (for a systematic introduction to the formalism
of matching different bulk space-time geometries on codimension-one hypersur-
faces (“thin shells”) see the textbook [50]):

(i) Matching relations from Einstein eqs.(17):

[∂η A]η0
= −16πT

√

b0 , [∂η lnC]η0
= − 16π

p
√

b0
T (27)

with notation
[

Y
]

η0
≡Y

∣

∣

η→η0+0 −Y
∣

∣

η→η0−0 for any quantityY.
(ii) Matching relation from gauge field eqs.(18)–(19):

[Fvη ]η0
= q , [F ]η0

= −β . (28)

(iii) X0-equation of motion of theLL-brane(the only non-trivial contribution of
second-orderLL-braneeqs.(5) in the case of embedding (13)):

T
2

(

〈

∂ηA
〉

η0
+ pb0

〈

∂η lnC
〉

η0

)

−
√

b0

(

q
〈

Fvη
〉

η0
−β 〈F 〉η=η0

)

= 0 (29)

with notation〈Y〉η0
≡ 1

2

(

Y
∣

∣

η→η0+0 +Y
∣

∣

η→η0−0

)

.



8 Eduardo Guendelman, Alexander Kaganovich, Emil Nissimov, Svetlana Pacheva

4 Explicit Solutions: Braneworlds via Lightlike Brane

Consider 5-dimensional AdS-Schwarzschild black hole in Eddington-Finkelstein
coordinates(v, r,x) (with x ≡ (x1,x2,x3)):

ds2 = −A(r)dv2 +2dvdr+Kr2dx2 , A(r) = Kr2−m/r2 , (30)

whereΛ = −6K is the bare negative 5-dimensional cosmological constant andm is
the mass parameter of the black hole. The pertinent horizon is located at:

A(r0) = 0→ r0 = (m/K)1/4 , where ∂rA(r0) > 0 . (31)

First, let us consider self-consistent Einstein-LL-branesystem (16) with a neutral
LL-brane source (i.e. no LL-brane couplings to bulk Maxwell and Kalb-Ramond
gauge fields:q,β = 0 in SLL [q,β ]). A simple trick to obtain“wormhole” -like solu-
tion to this coupled system is to change variables in (30):

r → r(η) = r0 + |η | (32)

with r0 being the AdS-Schwarzschild horizon (31), where nowη ∈ (−∞,+∞), i.e.,
consider:

ds2 = −A(η)dv2 +2dvdη +C(η)dx2 , (33)

A(η) = K(r0 + |η |)2− m
(r0 + |η |)2 , C(η) = K(r0 + |η |)2 , (34)

A(0) = 0 , A(η) > 0 for η 6= 0 .

Obviously, (32) isnot a smooth local coordinate transformation due to|η |. The
coefficients of the new metric (33)–(34) are continuous at the horizonη0 = 0 with
discontinuous first derivates across the horizon. TheLL-braneautomatically locates
itself on the horizon according to the “horizon-straddling” property of its world-
volume dynamics (15).

Substituting (33)–(34) into the matching relations (27)–(29) we find the follow-
ing relation between bulk space-time parameters(K = |Λ |/6,m) and theLL-brane
parameters(T,b0) :

T2 =
3

8π2K , T < 0 , b0 =
2
3

√
Km . (35)

Taking into account second Eq.(6) and (10) the intrinsic metric γab on theLL-
braneworldbecomesflat:

γ00 = −1 , γ0i = 0 , γi j =
3
2

δi j . (36)

The solution (34)–(36) describes a “wormhole”-likeD = 5 bulk space-time con-
sisting of two “universes” being identical copies of the exterior region beyond the
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horizon (r > r0) of the 5-dimensional AdS-Schwarzschild black hole glued together
along their common horizon (atr = r0) by theLL-brane, i.e., the latter serving as
a wormhole “throat”, which in turn can be viewed as aLL-braneworld with flat
intrinsic geometry (36).

Let us now consider the 5-dimensional AdS-Reissner-Nordström black hole (in
Eddington-Finkelstein coordinates(v, r,x)):

ds2 = −A(r)dv2 +2dvdr+Kr2dx2 , Λ = −6K ,

A(r) = Kr2− m
r2 +

Q
r4 , Fvr =

√

3
4π

Q
r3 . (37)

We can construct, following the same procedure, anothernon-symmetric“wormhole”-
like solution with a flatLL-braneworld occupying its “throat” provided theLL-
brane is electrically charged and couples to bulk Kalb-Ramond gauge field, i.e.,
q,β 6= 0 in (16), (1). This solution describes:

(a) “left” universe being a 5-dimensional flat Rindler space-time – the Rindler
“wedge” ofD = 5 Minkowski space [51, 52] (here|η |= X2, whereX is the standard
Rindler coordinate):

ds2 = ηdv2 +2dvdη +dx2 , for η < 0 ; (38)

(b) “right” universe comprizing the exteriorD = 5 space-time region of the AdS-
Reissner-Nordström black hole beyond theouterAdS-Reissner-Nordström horizon
r0 (A(r0) = 0 with A(r) as in (37) and where again we apply the non-smooth coor-
dinate change (32)):

ds2 = −A(η)dv2 +2dvdη +K(r0 + η)2dx2 (39)

A(η) = K(r0 + η)2− m
(r0 + η)2 +

Q2

(r0 + η)4 (40)

Fvη =

√

3
4π

Q
(r0 + η)3 , A(0) = 0 , ∂ηA(0) > 0 , for η > 0 . (41)

All physical parameters of the “wormhole”-like solution (38)–(41) are deter-
mined in terms of(q,β ) – the electric and Kalb-RamondLL-braneworldcharges:

m=
3

2πβ 2

(

1+
2q2

β 2

)

, Q2 =
9q2

2πβ 6 , |Λ | ≡ 6K = 4πβ 2 (42)

|T| = 1
8π

√

3
2

√
K +4π(β 2−q2) , b0 =

1

6
√

K

[

1+
8π
3

√
K(β 2−q2)

]

(43)

Here againT < 0. Let is stress the importance of the third relation in (42).Namely,
the dynamically generated space-varying effective cosmological constant (cf. sec-
ond Eq.(20)) through the Kalb-Ramond coupling of theLL-brane(cf. second match-
ing relation in (28)) has zero value in the “right” AdS-Reissner-Nordström “uni-
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verse” and has positive value 4πβ 2 in the “left” flat Rindler “universe” (38) com-
pensating the negative bare cosmological constantΛ .

The intrinsic metricγab on theLL-braneworldis againflat:

γ00 = −1 , γ0i = 0 , γi j =
1
b0

δi j (44)

5 Traversability and Trapping Near the Lightlike Braneworld

The “wormhole”-like solutions presented in the previous Section share the following
important properties:

(a) TheLL-braneworldsat the wormhole “throats” represent “exotic” matter with
T < 0, i.e., negative brane tension implying violation of the null-energy conditions
as predicted by general wormhole arguments [21] (although the latter could be reme-
died via quantum fluctuations).

(b) The wormhole space-times constructed viaLL-branesat their “throats” are
not traversable w.r.t. the “laboratory” time of a static observer in either of the dif-
ferent “universes” comprising the pertinent wormhole space-time manifold since
theLL-branessitting at the “throats” look as black hole horizons to the static ob-
server. On the other hand, these wormholesare traversablew.r.t. theproper timeof
a traveling observer.

Indeed, proper-time traversability can be easily seen by considering dynamics of
test particle of massm0 (“traveling observer”) in a wormhole background, which is
described by the reparametrization-invariant world-lineaction:

Sparticle=
1
2

∫

dλ
[1

e
.
xµ .

xν
Gµν −em2

0] . (45)

Using energyE and orbital momentumJ conservation and introducing theproper
world-line times ( ds

dλ = em0), the “mass-shell” constraint equation (the equation
w.r.t. the “einbein”e) produced by the action (45)) yields:

(

dη
ds

)2

+Veff(η) =
E 2

m2
0

, Veff(η) ≡ A(η)
(

1+
J 2

m2
0C(η)

)

(46)

where the metric coefficientsA(η), C(η) are those in (12).
Since the “effective potential”Veff(η) in (46) is everywhere non-negative and

vanishes only at the wormhole throat(s) (η = η0, whereA(η0) = 0), “radially” mov-
ing test matter (e.g.a traveling observer) with zero “impact” parameterJ = 0 and
with sufficiently large energyE ) will always cross from one “universe” to another
within finite amount of its proper-time (see Fig.1). Moreover, this test matter (trav-
elling observer) will “shuttle” between the turning pointsη±:
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Veff(η±) =
E 2

m2
0

, η+ > 0 , η− < 0 , (47)

so that in fact it will be trapped in the vicinity of theLL-braneworld. This effect is
analogous to the gravitational trapping of matter near domain wall of a stable false
vacuum bubble in cosmology [53].

-5 5

20

40

60

80

Fig. 1 Shape of the “effective potential”Veff(η) = A(η) with A(η) as in (34). Travelling observer
along the extra 5-th dimension will “shuttle” between the two 5-dimensional AdS “universes”
crossing in either direction the 4-dimensional flat braneworld within finiteproper-time intervals.

6 Discussion

Let us recapitulate the crucial properties of the dynamics of LL-branesinteracting
with gravity and bulk space-time gauge fields which enabled us to construct the
LL-braneworldsolutions presented above:

• (i) “Horizon straddling” – automatic positioning ofLL-braneson (one of) the
horizon(s) of the bulk space-time geometry.

• (ii) Intrinsic nature of theLL-brane tension as an additionaldegree of free-
dom unlike the case of standard Nambu-Gotop-branes; (where it is a given
ad hocconstant), and which might in particular acquire negative values. More-
over, the variable tension feature significantly distinguishesLL-brane models
from the previously proposedtensionless p-branes – the latter rather resemble
p-dimensional continuous distributions of independent massless point-particles
without cohesion among them.

• (iii) The stress-energy tensors of theLL-branesare systematically derived from
the underlyingLL-braneLagrangian actions and provide the appropriate source
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terms on the r.h.s. of Einstein equations to enable the existence of consistent
non-trivial wormhole-like solutions.

• (iv) Electrically chargedLL-branesnaturally produceasymmetricwormholes
with theLL-branesthemselves materializing the wormhole “throats” and uniquely
determining the pertinent wormhole parameters.

• (v) LL-branesnaturally couple to Kalb-Ramond bulk space-time gauge fields
which results indynamicalgeneration of space-time varying cosmological con-
stant. (vi)LL-branesnaturally producelightlike braneworlds (extra dimensions
are undetectable for observers confined on theLL-braneuniverse).

In our previous works we have also shown that:

• (vii) LL-branestrigger sequences of spontaneous compactification/decompactification
transitions of space-time [18, 19, 20].

• (viii) LL-branesremove physical singularities of black holes [15].

The crucial importance ofLL-branes in wormhole physics is underscored by
the role they are playing in the self-consistent contsruction of the famous Einstein-
Rosen “bridge” wormhole in itsoriginal formulation [55] – historically the first
explicit wormhole solution. To this end let us make the following important remark.
In several standard textbooks,e.g. [52, 56], the formulation of the Einstein-Rosen
“bridge” uses the Kruskal-Szekeres manifold, where the Einstein-Rosen “bridge”
geometry becomesdynamical(see ref.[52], p.839, Fig. 31.6, and ref. [56], p.228,
Fig. 5.15). The latter notion of the Einstein-Rosen “bridge” is not equivalent to the
original Einstein-Rosen’s formulation in the classic paper [55], where the space-
time manifold isstaticspherically symmetric consisting of two identical copies of
the outer Schwarzschild space-time region (r > 2m) glued together along the horizon
at r = 2m. Namely, the two regions in Kruskal-Szekeres space-time corresponding
to the outer Schwarzschild space-time region (r > 2m) and labeled(I) and(III ) in
ref.[52] are generallydisconnectedand share only a two-sphere (the angular part) as
a common border (U = 0,V = 0 in Kruskal-Szekeres coordinates), whereas in the
original Einstein-Rosen “bridge” construction [55] the boundary between the two
identical copies of the outer Schwarzschild space-time region (r > 2m) is their com-
mon horizon (r = 2m) – a three-dimensionallightlike hypersurface. In refs.[14, 17]
it has been shown that the Einstein-Rosen “bridge” in its original formulation [55]
naturally arises as the simplest particular case of static spherically symmetric worm-
hole solutions produced byLL-branesas gravitational sources, where the two iden-
tical “universes” with Schwarzschild outer-region geometry are glued together by
a LL-braneoccupying their common horizon – the wormhole “throat”. An under-
standing of this picture within the framework of Kruskal-Szekeres manifold was
subsequently given in ref.[57], which uses Rindler’s identification of antipodal fu-
ture event horizons.

One of the most interesting physical phenomena in wormhole physics is the
well-known Misner-Wheeler “charge without charge” effect[54]. Namely, Mis-
ner and Wheeler have shown that wormholes connecting two asymptotically flat
space-times provide the possibility of existence of electromagnetically non-trivial
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solutions, wherewithout being produced by any charge sourcethe flux of the elec-
tric field flows from one universe to the other, thus giving theimpression of being
positively charged in one universe and negatively charged in the other universe.

In our recent paper [59] we found an opposite “charge-hiding” effect in worm-
hole physics, namely, that a genuinely charged matter source of gravity and elec-
tromagnetism may appearelectrically neutralto an external observer. This phe-
nomenon takes place when coupling self-consistently an electrically chargedLL-
braneto gravity and anon-standardform of nonlinear electrodynamics, whose La-
grangian contains a square-root of the ordinary Maxwell term:

L(F2) = −1
4

F2− f
2

√

−F2 , F2 ≡ FµνFµν , (48)

f being a positive coupling constant. In flat space-time the theory (48) is known to
produce a QCD-like effective potential between charged fermions [60]–[65]. When
coupled to gravity it generates an effective global cosmological constantΛeff = 2π f 2

as well a nontrivial constant radial vacuum electric fieldf/
√

2 [58]. When in addi-
tion gravity and nonlinear electrodynamics (48) also interact self-consistently with a
chargedLL-branewe found in ref.[59] a new type of wormhole solution which con-
nects a non-compact “universe”, comprising the exterior region of Schwarzschild-de
Sitter black hole beyond the internal (Schwarzschild-typehorizon), to a Levi-Civita-
Bertotti-Robinson-type “tube-like” “universe” with two compactified dimensions
(cf. [29, 30, 31]) via a wormhole “throat” occupied by the chargedLL-brane. In this
solution the whole electric flux produced by the chargedLL-brane is pushed into
the “tube-like” Levi-Civita-Bertotti-Robinson-type “universe” and thus the brane is
detected as neutral by an observer in the Schwarzschild-de-Sitter “universe”.

In the subsequent recent paper [66] we succeeded to find a truly “charge-
confining” wormhole solution when the coupled system of gravity and non-standard
nonlinear electrodynamikcs (48) are self-consistently interacting with two sepa-
rate oppositely chargedLL-branes. Namely, we found a self-consistent “two-throat”
wormhole solution where the “left-most” and the “right-most” “universes” are two
identical copies of the exterior region of the electricallyneutral Schwarzschild-de-
Sitter black hole beyond the Schwarzschild horizon, whereas the “middle” “uni-
verse” is of generalized Levi-Civita-Bertotti-Robinson “tube-like” form with geom-
etry dS2×S2 (dS2 is the two-dimensional de Sitter space). It comprises the finite-
size intermediate region ofdS2 between its two horizons. Both “throats” are occu-
pied by the two oppositely chargedLL-branesand the whole electric flux produced
by the latter is confined entirely within the middle finite-size “tube-like” “universe”.

One of the most important issues to be studied is the problem of stability of the
wormhole(-like) solutions withLL-branesat their “troats”, in particular, the above
presentedLL-braneworldsolutions in anti-de Sitter bulk space-times. The “horizon-
straddling” property (15) ofLL-branedynamics will impose severe restrictions on
the impact of the perturbations of the bulk space-time geometry.
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